
WA13. Sig SYSTEMS ARCHITECTS INC RANDOLPHe MASS F,16 Q/2COMPUTER SYSTEMS ACQUISITION mTRICS K ,AtOoR. VOLUME 1. INTROD-- ETC(AY 82 P19|26-6O-C-0207
IMJ¢ LASSZFIE | [0Z-TR.B2 R311) NLEi/E/I/I/IllI
*lmllllllmlllu
IIIIIIIIIIIIIu
flllflf/lfllffllf

ESD-TR- 82-143(I)

JNTRODUCTION AND GENERAL INSTRUCTIONS' OR
COMPUTER SYSTEMS ACQUISITION METRICS0 HANDBOOK. VOLUME L

Systems Architects, Inc.
50 Thomas Patten Drive
Randolph, MA 02368

May 1982

Approved for public release;
Distribution unlimited.

K Prepared for

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
DEPUTY FOR TECHNICAL OPERATIONS AND
PRODUCT ASSURANCE
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

82 10 18 0 2

______________________ . ~ ~ ,' .m.

-. it . . .

LEGAL NOTICE

When U. So Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, funished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

REVIW AND APPROVAL

This technical report has been reviewed and is approved for publication.

ROBERT V. VIERAITIS, Jr., iLt, USAF INW. YELY, Jr., Lt Col, USAF
Project Officer Chief, Computer Engineering

Applications Division

FOR THE COXWDER

LTER V. TURG8(t
Acting Director, Enineering and Test
Deputy for hchnical Operations

and Product Assurance

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE n Dot .neo, , ,

READ INSTRUCTIONSREPORT DOCUMENTAXION PAGE BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

ESD-TR-82-143(I) 1iA- Amo 57_0 - _ _
"

_

4. 7iTLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

t troduction and General Instructionslfor
Computer Systems Acquisition Metrics
Handbook. Volume I. 6. PERFORMING OIG. REPORT NUMBER

7. AUTNOR(s) a. CONTRACT OR GRANT NUMBER(a)

Systems Architect, Inc.
F19628-80-C-0207

S. PERFORMING ORGANILAION NAME.ANO AfnnRFtS 10. PROGRAM ELEMENT. PROJECT. TASK

Systems Architects, Inc. AREA a WORK UNIT NUMBERS

50 Thomas Patten Drive
Randolph, MA 02368

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Electronic Systems Division (TOEE) May 1982
Hanscom AFB 13. NUM!;R OF PAGES

Massachusetts 01731 __

14. MONITORING AGENCY NAME & ADDRESS('l different from Controlling Office) 1. SECURITY CLASS. (of this report)

Unclassified
IS. DECL ASSI FICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, It different from Report)

I. SUPPLEMENTARY NOTES

It. KEY WORDS (Coanee an re'tee side It n*aeeay mnd Ioeftl by bock nmber)

Computer systems
Metrics
Quality assurnce
Software

LASSTRAC' (Continue an reverse sid it nom an,,, I dentif by block mrbeor
V%

is volume provides an overview to a standard set of procedures for
qualitatively specifying and measuring the quality of a computer software
system during its acquisition life cycle

D A N 1473 EOR ON , 1ov *l OBSoLTE Unclassified
SCURITY CLASSIFICATION OF THIS PAGE (Nta, wet. bNe

iii _ _ _ _.. . ._

TABLE OF CONTENTS

Section Title Page

I INTRODUCTION TO SOFTWARE METRICS

1.1 OVERVIEW. I-1
1.2 SOFTWARE METRICS FRAMEWORK I-1

-1.Z.1 Quality Factors. 1-3
1.2.2 Criteria 1-3
1.2.3 Metrics. 1-9
1.2.4 Data Elements. 1-9

II SOFTWARE DEVELOPMENT LIFE CYCLE MODEL

2.1 INTRODUCTION.....
2.2 THE SOFTWARE DEVELOPMENT LIFE CYCLE MODEL FOR

METRICS- 1
2.3 THE SOFTWARE DEVELOPMENT LIFE CYCLE MODEL FROM

ESD GUIDEBOOK SERIES.- 1
2.4 SOFTWARE DEVELOPMENT PRODUCTS. 11-3

2.4.1 First Metric Application Information
Requirements 11-4

2.4.2 Update Information Requirements11-8
2.4.3 Documentation Considerations.11-12

2.4.3.1 Contents of Documents.11-12
2.4.3.2 Product Mappin*-. I.~ 11-12
2.4.3.3 Appropriate Leyels of A '~~

Metrics '~l
2.4.3.4 Sequencing of *fetric Appfi*i. hitl

tion . .. -,16

2.5 APPLICABILITY OF SOFTWARE METW(:CS JM1G~i
LIFE CYCLE .I 11k16

III HANDBOOK FRAMEWORK t ?,tot

3.1 COMPONENTS OF COMPUTER SYSTEM* ACQUJ.6,TO~
32METRICS HANDBOOK........ 111-1
32INTERRELATIONSHIP OF*S6FTWARiEMETRiC'A!fr

HANDBOOK'S FRAMEWORKS . . . 4..
IV HOW THE HANDBOOK WORKS

4.1 INTRODUCTION. V-l
4.2 STEPS FOR USING THE! SOiTWRI3MPThICS IIAND)ISOOK .V-

4.3 IDENTIFICATION OF WORKSHEETS IV-2
4.4 DATA ELEMENT DICTIONARY (flED)IV-4

TABLE OF CONTENTS (Cont'd)

Section Title Page

V QUALITY FACTOR SELECTION

5.1 INTRODUCTION V-1
5.2 QUALITY FACTOR TRADE OFFS V-1
5.3 SIGNIFICANCE OF QUALTTY FACTORS IN C SYSTEMS . V-3

VI QUALITY FACTOR EVALUATION

6.1 POST DATA COLLECTION VI-1

6.2 EVALUATION VI-1

A011 *d#%? 4

iv.v6.

SECTION I

INTRODUCTION TO SOFTWARE METRICS

1.1 OVERVIEW

This Handbook contains a standard set of procedures to quanti-

tatively specify and measure the quality of a computer software

system during its acquisition life cycle. These quantitative

measures, or metrics, provide the user with a tool to better as-

sess the system's development and potential performance throughout

the acquisition phases.

The metrics are calculated from the answers to questions,

called data elements in this Handbook, which also serve as a check-

list to aid Software Quality Assurance. These metrics are a tool

for current Software Quality Assurance practices. They are an

added feature to current tools and techniques utilized in Software

Quality _-urance practices.

The Handbook is tailored specifically to address embedded Com-

mand Control and Communications (C) computer systems. Efforts to

apply the procedures to other than C3 systems may require reworking

by the user of the materials contained in the Handbook.

1.2 SOFTWARE METRICS FRAMEWORK

Software Metrics are a set of measurements for measuring es-

sential aspects of software systems. Realistic assessments and

ratings are based on the measurements so that the overall quality

of a system's software can be made visible.

There are four levels in the Software Metrics Framework pre-

sented in this Handbook: (1) Factors, (2) Criteria, (3) Metrics,

and (4) Data Elements. This Framework is illustrated in Figure I-1.

Each level of the Framework is defined in the following sub-
sections. Conflicting or different definitions outside of this

Handbook are not applicable to Software Metrics, and conversely,

I-I

1-2I

the definitions found within this Handbook are not necessarily ap-

plicable to other concepts.

1.2.1 Quality Factors

Quality Factors are management-oriented terms which

define desirable characteristics of the software systems

under development from a management perspective. Presence
of these Quality Factors improve the probability of producing

the desired softwsre system. A quantitativei/analysis of the

Quality Factors will indicate areas of weakness and strength

in the system. Maintainability and Integrity are two ex-
amples of Quality Factors. Maintainability refers to the

effort required to locate and fix an error in an operational

program. Integrity refers to the extent to which access to

software or data by unauthorized persons can be controlled.

Eleven (11) Quality Factors have been selected for

this Handbook. TABLE I-A contains a complete list of the

Quality Factors and their definition. A discussion of se-

lecting appropriate Quality Factors for a specific system is

found in Section V, "Quality Factor Selection".

1.2.2 Criteria

Criteria form the next level of the Framework under
the Quality Factors. Criteria are software-oriented terms

that describe software attributes. Each Quality Factor has

two or more Criteria related to it in a hierarchy. Consis-

tency and Simplicity are two examples of Criteria related to

the Quality Factor "Maintainability". Consistency and Sim-

plicity are two examples of Criteria related to the Quality
Factor "Maintainability". Consistency refers to those attri-

butes of the software that provide implementation of function

* in the most understandable manner.

Twenty-two (22) Criteria have been included in this

Handbook. TABLE I-B contains a complete list of the Criteria

and a definition for each. Figure 1-2 shows the relationship

of the Criteria to the Quality Factors.

I

.

FACTOR DEFINITION

Extent to which a program satisfies itsCorrectness (Co) specifications And fulfills the user's mission
obj ectives.

Reliability (Re.) Extent to which a program can be expected toperform its intended function with required
precision.

Efficiency (Ef) The amount of computing resources and coderequired by a program to perform a function.

Integrity (It) Extent to which access to software or data byunauthorized persons can be controlled.

Usability (US) Effort required to learn, operate, prepareinput, and interpret output of a program.

Maintiainability Effort required to locate and fix an error in
(Ma) an operational program.

Testability (To) Effort required to test a program to insure it
performs its intended function.

Flexibility (x) Effort requited to modify an operational
program.

Portability (PE) Effort required to transfer a program from one
hardware eonfiguration and/or software system.................. environment to another.

Reusabilit7 (Ru) Exteat to which a program can be used in other
9"liCations - relatoedto the packaging and
dSpe of the functions that programs perform.

Interoperability Effort requiredto couple one system with
(Ip) aelther.

TABLE .- A

QUALITY FACTOR TABLE

1-4

-_I

CRITERION DEFINITION

Those attributes of the software that provide
a thread from the requirements to the imple-

Traceability mentation with respect to the specific develop-
ment and operational environment.

Those attributes of the software that provide
Completeness full implementation of the functions required.

Those attributes of the software that provide
uniform design and implementation techniques

Consistency and notation.

Those attributes of the software that provide
Accuracy the required precision in calculation andoutputs.

Those attributes of the software that provide
continuity of operation under nonnominalError Tolerance conditions.

Those attributes of the software that provide
Simplicity implementation of functions in the most under-standable manner. (Usually avoidance of prac-

,________tices which increase complexit v).
Those attributes of the software that provide

odularity a structure of highly independent modules.

Those attributes of the software that provide
Generality breadth to the function performed modules.

Those attributes of the software that provide
Expandability for expansion of data storage requirements orcomputational functions.

Those attributes of the software that provide
Instrumentation for the measurement of usage or identification
I eaof erTors.

Self - Those attributes of the software that provide
Descriptiveness explanation of the implementation of a

function.

TABLE I-B

CRITERIA TABLE

I-No

CRITERION IDEFINITION
Execution Those attributes of the software that provide
Efficiency for minimum processing time.

Those attributes of the software that provide
Storage for minimum storage requirements during
Efficiency operation.

Those attributes of the software that provide

Access Control for control of the access of software and data.,

Those attributes of the software that provide
AccessAuditfor an audit of the access of software andAccessAuditdata.

Those attributes of the software that deter-
mine operation and procedures concerned with

Operability the operation-of the software.

Those attributes of tesotwMare that provide

training transition from current operation or initialfamiliarization.

Those attributes of the software that provide
Commutiativeness useful inputs and outputs which can be

ass iuilated.

hseattrMIbue of7tV software that determine

Softwar'e System its dependendy on the softwaf#6 *lvirohment
Independence (operating systems, utilities, input/output

- routines, etc.).

those atttibutes of the software that determine
Madhine its dependency dn the hardw~are system.-
Independence

CoftuicatioaSf Thse attributes of tht software that Provide
Coinonality Wkl use of standard pr~tdcols and intatfice

Thote attributes of the software that provide
Dats Com~onality the Ilse of StAndaitd data representations.

KJYAAB -. __nee

CORRECTNESS

Traceability conisteI u cmpleteanes's

ErrTole rancs consistency Accuracy Simplicity

r Execution Efficiency Storage Efficiency

LEGEND
SFactor u

=Criteria
Access Cantrol Access Audit 7

USMI LITY

Training- Conmicatle; s Operability

FIGURE 1-2

RELATIONSHIP OF CRITERIA TO SOFTWARE QUALITY FACTORS

1-7

Staplenera I~ M uaity Expar~nd ai S If-Os cri ptl vnts s

hTESTABILIT

Smsp lvlty oaminc ty IonstrmnataaCuiona t 9-e

LISENLIT

TO SOFWARE QALITYFATR(Cnnud

I-8 __________smMchie______rpt

i, '

INTEPEMB-IT

1.2.3 Metrics

Metrics are at the third level of the Framework and

represent the measurable aspects of the Criteria. Each Cri-

terion has at least one Metric, while some Criteria have sev-

eral Metrics associated with them. Design Structure Measure,

Structured Programming Check, and Complexity Measure are ex-

amples of the Metrics connected with the Criterion "Simplicity".
Thirty-seven (37) Metrics have been identified in this

Handbook. TABLE I-C has a complete list of the Metrics.

1.2.4 Data Elements

Data Elements are at the fourth level of the Framework.

They are quantifyable questions that combine to produce a

Metric Value. An algorithm based on the answers to Data Ele-

ments for each Metric determines the value for each Metric.

Data Elements are questions about the software and software

development products that call for either YES-NO or numeric

type responses. Each Metric has at least one Data Element.

For example, Hierarchical Structure, Module Independence, and

Size of Data Base are the Data Elements that comprise the

Metric "Design Structure Measure". Hierarchical Structure

asks the question: "Is a hierarchical chart provided which

identifies all modules in the system?" Module Independence

asks: "Is the module independent of the source of the input

or the destination of the output?" And size of Data Base asks:
"Number of unique data items in a data base?" All 126 Data

Elements are defined in a Data Element Dictionary which is

provided as part-of this Handbook.

I-9

1* ____ _0_

Access Audit Checklist

Access Control Checklist

Accuracy Checklist

Communications Commonality Checklist

User Input Interface Mesure
User Output Interface Moa~ure
Completeness Checklist

Procedure Consistency Measure

Data Consistency Measure

Data Commonality Checklist

Perfornance Requirements Check
Iterative Processing Efficiency Measure

Data Usage Efficiency Mpspra
Error Tolerance Control Checklist

Recovery From Improper Input Data Checklist

Recovery From Computational Failures Checklist

Recovery From Hardware Faults Chpcklist

Recovery From Device Error# Chocklist
Data Storage Expansion Measure

Extensibility Measure

Implementation For G nerality Checklist

Module TestiS Mesprf

Integration Testing Measure

System Testing Measure

Machine Independence Measure

Modular Implementation Measure

Operability Checklist

Quantity of Cqmments

Effectiveness of Commostf Upqsure

Descriptiveness .of Implemsattion Language Measure

Storage. Efficiency Mesur.
Design Structyre Meespr*
Complexity Measure
Measure of Coding Simplicity
Software System Independence Measure

Traiania Checklist

Trapoab4lily checklist

TABLE I-C

METRICS

I -10j-- I - - , _ , w_ _%_

SECTION II

SOFTWARE DEVELOPMENT LIFE CYCLE MODEL

2.1 INTRODUCTION

The Software Development Life Cycle Model is a management tool
that describes the major activities of a software development effort

in the order in which they are performed. There have been a number
of Software Development Life Cycle Models developed, each for a

particular environment. The Software Development Life Cycle Model

adapted for use in relationship to the Metric is a simple one,

generic in nature. The idea behind selecting such a simple model

is that it can be mapped into more particular models so that the
Metrics can be applied in a wide range of environments.

2.2 THE SOFTWARE DEVELOPMENT LIFE CYCLE MODEL FOR METRICS

The Software Development Life Cycle Model for Metrics has

five phases; (1) Requirements Analysis (2) Preliminary Design (3)

Detail Design (4) Implementation and (5) Test and Integration.

As of the writing of this Handbook,Metrics have been developed

for the first four phases and are still under development for the

Test and Integration phase and therefore Metrics for this phase

are not included in this Handbook. We discuss this phase of the

model because update information is collected during this phase.

2.3 THE SOFTWARE DEVELOPMENT LIFE CYCLE MODEL FROM ESD GUIDEBOOK
SERIES

The Software Development Life Cycle Model from the ESD Guide-
book Series has seven phases; (1) Conception (2) Analysis (3)
Design (4) Coding and Checkout (5) Test and Integration (6)
Installation and (7) Operation and Support. Figure 11-1 maps the

1f-1

kS

(

a n

.............I ,

" Ii

* ll

i i

.......

11

Metrics model into the Guidebook series model. As can be seen in

Figure II-1 there are three major differences between the two

models; (1) The Metrics model does not consider three of the

Guidebook phases, "Conception", "Installation" or "Operation

and Support" (2) The Metrics model's "Requirements Analysis"

and "Preliminary Design" phases correspond to the Guidebook's

"Analysis" phase and (3) The Metrics models "Detail Design" and

"Implementation" correspond to the Guideboo1t's "Design" and

"Coding and Checkout". This particular mapping is based on the
description of these phases in the Guidebook and explains why

Metrics "Preliminary Design" is mapped to "Analysis" and not to
"Design". It should be made clear that these models are descrip-
tions of the order in which events usually take place and are

not "Directives" that demand events take place in that order.
Therefore there are no "Hard acid Fast" rules for any mapping,

the users judegement must be exercised in applying the metrics

using the life cycle models involved as a guide, not a directive.

2.4 SOFTWARE DEVELOPMENT PRODUCTS

In order to apply the Metrics to measure software quality,

two types of information must be available. The first type of

information required is the original organized documentation that

describes the system being measured. The second type of information
required by Software Metrics is the revisions to the original

documents. The original documents are utilized by Software Met-

rics in the first application efforts, in order to catch develop-

ment problems early in the life cycle. The revised documents are

measured during the update process in order to determine whether

these problems have been corrected adequately. This information

is available in what can be generically called "Software Develop-

ment Products". These "Software Development Products" are pro-

duced throughout the "Software Development Life Cycle" and includc

11-3

such products as; requirement specifications, design documentation,

system/module'diagrams and flowcharts with PDL, code listings and

complete sets of plans and procedures. For a more detailed under-

standing, as an example use the "Products" tied to the ESD Guide-

book Life-Cycle Events Guidebook. These are "Products" that are

usually produced during the development and acquisition of an

embedded software system. Table II-A lists these "Products" as

they appear in the Guidebook and organized under the Guidebooks

Software Development Life Cycle Model. By using the Table II-A

in conjunction with Figure II-1 it is possible to map these

"Products" into the Metric Software Development Model. The results

of this mapping is demonstrated in Figure 11-2 and in more detail

in Figure 11-3. Notice that products of later phases provide in-

formation required for updates of Metrics originally calculated

in earlier phases.

2.4.1 First Metric Application Information Requirements

The initial types of information required by Software

Metrics (for the Requirement Analysis Metrics) are Tradeoff

Study Reports and System Specifications. These documents are

usually generated during an analysis of system alternatives.

Other documents necessary for Requirements Analysis phase

Metrics are authenticated development specifications for

each CPCI and any specification or ICD changes, which are

generated during allocation of requirements to the computer

program. FIGURE 11-3 details the activities and products in

the Requirements Analysis and the Preliminary Design phase.

A second set of information is required .n order to

perform Preliminary Design phase Software Metrics. The parts

of the draft pro4uct specifications cozt*ning design approach-

es for each CPCI, which are genqrated 4uring the requireents

allocation process, together with ghe 'x.ntes and action item

responsns that are produced during a Preliminary Design Re-

view are both required for thp Software Metrics in this phase.

FIGURE II-3 describes the activities and products needed for

the Preliminary Design phase, as well as Requirement Analysis

phase.

11-4__________________I______________,______,______,______,__

A NLYS IS PHASE

___ Product (s)

A. Devise 4 analyze alternatives A. 1. Tradeoff study reports.
for the system, Segment (if 2. Initial or Authenticated
any), or any Software Subsystem System Specification&I

directly containing the Computer Segment SpecificationsProgram. (it W).

B. Allocate requirements to B.1. Authenticated Development
the Coqputer Program: i.e. Specification for each CPCI.

Functions. 2. Possible higher-level speci-
Performance (e.g. response ficatian, and IC), changes
times). 3. Parts of draft Product Speci-
Interface (with others) ficatians cantaining design
Design costraints (e.g., appraches for each CPCI.

prescribed algorithm,
core & processing time
budgets).

Testing.

C. Conduct PDR(s) for the C. PDR minutes and action item
Cooter program's (PCI s). responses.

IESIGN PHASE

Activity Product(s)

A.l. Define algorithms not pre- A.I. Functional flowcharts.
viously prescribed. 2. Detailed flowcharts.

2. Design data storage structures. 3. Data format descriptions.
3. Define Computer Program Logic. 4. Descriptions of algorithm

not previously prescribed.

B. Allocate Coputer Program B Preliminary Product Speci-
requirements internally fications, including the
(e.g., to (PCs). above.

C. Test Plamng. C.1. System, Segment (if any)
and CPCI Test Plans.

2. Prelminary (PCI Test
Procedures.

D. CDR(s) for the Comuter D. CDR minutes 4 action item
Program's CPC(s). responses.

CODING AND ECOUr PHASE

Activity Product(s)

A. Coding. A-B Code.

B. Liited checkout of compiler
or assembly units.

C. Correspanding logic 4 data C. Altered Product Specifications,
structure revisions. including compiler/assembly

______________________________listings.

TEST AND INT#GRATICN PHAE

Activity Pouts

A. Test Plarmi g. A.1. Final CPCI Test Procedures.
2. Semnt (if my) and system-

level Test Procedures.

B. Module tests. B-D.Test ftont.
2.Computer Progrm coding

C. CPCI test (PQT 4 mrT). 3.Nadiri~d Proiduct
Specifications.

4.Possible high-level specifi-
D. Software S'1bWstm integration. cation, and ICD, changes.

TABLE II-A

LIFE CYCLE EVENTS

TT-S

141:

.F44 44

log uILI

I44

oww

o 11-6

Klie

0-U

- c z

F-I-

fuJ

11-7

In order to perform Detail Design phase Software

Metrics, functional flowcharts, detailed flowcharts, data

format descriptions, and descriptions of any additional al-

gorithms are required. These products are generated while

defining computer program logic and new algorithms, and when

designing data storage structures. These products may be

separate from, or included in, the preliminary Product spec-

ifications that are also required in the Detail Design phase.

Preliminary Product specifications are generated when allo-

cating computer program requirements internally. The final

products required for the Detail Design phase are the minutes

and action item responses generated during a Critical Design

Review. FIGURE 11-4 depicts the activities and products of

the Detail Design phase. An update to the Preliminary Design

Software Metrics is applied during this phase. This update

process will be discussed in more detail in Section 2.4.2

"Update Information Requirements".

The information required to perform Implementation

phase Software Metrics is the source code. This code is

generated by the coding process itself, as well as through

limited checkouts of compiler or assembly units. FIGURE II-5

details the activities and products required for the Implemen-

tation phase. An update to the Detail Design phase Software

Metrics should be performed during this phase. The procedure

will be discussed in more detail in Section 2.4.2 "Update Infor-

mation Requirements".

2.4.2 Update Information Rlquirements

There are five update applications of Software Metrics
performed during the software development life cycle. Pre-
liminary Design metrics are reapplied twice, Detail Design
mtrics are reapplied twice, and Implementation metrics are

reapplied once. TABLE II-B lists the update applications

and the phases in which the updates are applied. "Steps for
Update Applications" in the Module Instructions of each
Quality Factor describes the detailed process for performing
updates.

1I-8

Bigg

i i l. I4 c i

m u ,."-

mill-II

-4E-

*uIHI

t II-9

-
4

U --

0-1

UPDATE APPLICATION PHASE WHEN UPDATES OCCUR

Preliminary Design Detail Design

Detail Design Implementation

Preliminary Design Test and Integration

Implementation Test and Integration

Detail Design Test and Integration

TABLE II-B

UPDATE APPLICATIONS

Software Metrics is first re-applied to revised

Preliminary Design documentation. Any segment Test Plans,

System and CPCI Test Plans and preliminary CPCI Test Pro-

cedures are required for this update process. These pro-

ducts are generated during test planning activities in the

Detail Design phase. FIGURE 11-4 shows the Preliminary Design

update products and activities.

The second re-application of Software Metrics is to

revised Detail Design documentation. Altered Product Speci-

fications, including compiler and/or assembly listings are

required for this update application. These documents are

produced during corresponding logic and data structure revision

activities in the Implementation phase of the life cycle.

FIGURE 11-5 depicts the Detail Design update products and activ-

ities.

The final three update applications are re-applications

of Software Metrics to Preliminary Design., Implementation and
Detail Design documentation. The update to the Preliminary

Design documentation requires final CPCI Test Procedures, any

segment and system-level Test Procedures, and Test Reports.
These products are generated during Test Planning activities,
and module and CPCI tests and software subsystem integration

activities in the Test and Integration phase. The update to

the Implementation phase documentation requires computer

II-11

i, I I4

program coding changes which are generated during module tests,
CPCI tests, and software subsystem integration activities of

the Test and Integration phase. The final update is applied
to Detail Design phase documentation and requires modified

Product specifications, and possible high-level specification

and ICD changes. These documents are also generated during

module and CPCI tests, and software subsystem integration
activities in the Test and Integration phase. FIGURE II-6

details the activities and products of the Test and Integration

phase.

2.4.3 Documentation Considerations

There are four major issues to consider when applying
Software Metrics to the products generated during a project's

life cycle.

(1) The content of the documents

(2) The possibility that the products may not map

uniquely into discrete phases

(3) The appropriate level of application, System/

Subsystem, or Subsystem/Module

(4) The sequencing of Metric applications.

2.4.3.1 Contents of Documents

The first issue to consider is the content of
the documents. The type of information asked for by

the Software Metrics should be found in the documents

named in Subsection 2.2 and repeated in the Module

Instructions. If these documents do not contain the
necessary information, an investigation should be
made into other contractor-supplied documentation to

locate the sources of this information. If the infor-
mation cannot be located, this may indicate a "gap"

in the development and the issue should be resolved.

2.4.3.2 Product Mappin&

The second issue involving documentation con-

cerns the possibility that products may not always map

11-12

Iill 0

,L)
ii

I 0°

tz

Ir I

11o13

1* 7I--

uniquely into discrete life cycle phases. Thus, it
may be necessary to refer to the documentation of pre-

vious phases to answer some of the Data Element ques-
tions in a particular phase.

2.4.3.3 Appropriate Levels of Applying Metrics

Software Metrics may be applied on two sepa-

rate sets of levels; (1) System/Subsystem levels or

(2) Subsystem/Module levels.

The third issue that concerns application of

the metrics involves choosing the appropriate levels

of application of the metrics. The metric system has

two levels and can be applied either at the System/

Subsystem levels or at the Subsystem/Module levels.

If the decision is made to apply the metrics at the

System/Subsystem levels one Handbook is required. For

each Subsystem/Module an additional Handbook is re-

quired for the particular Subsystem/Module application.

A "System" is considered to be a collection

of programs and/or subsystems sufficient to accomplish

a significant, coherent application or function. There-

fore, a "system-level" application of Software Metrics

entails:

(1) Selecting Quality Factors for the entire

system

(2) Applying Software Metrics to the docu-

ments that describe the collection of
programs and/or subsystems that accom-

plish the mission of the system in order

to determine the quality of those fac-

tors in the system.

For instance, before responding to the Data Element

question:

"Are requirements itemized so that the

various functions to be performed, their

inputs and outputs, are clearly delineated?"

as in Data Element "Unambiguous References"

11-14

4

2.4.3.3 continued

a system-level measurement in the Requirement Analysis

phase requires searching the System specifications to

determine if all of the subsystem's functions, their

inputs and their outputs, have been clearly delineated.

At the Preliminary Design phase, the Development speci-

fications for all the subsystems should be searched to

determine if all of the modules' functions, inputs and

outputs for all of the subsystems have been clearly de-

lineated before answering the same question. Through-

out the metric application and life cycle the appro-

priate level System/Subsystem must be documented.

Space for this is provided in the Handbook.

A "Subsystem" is a collection of modules or-

ganized in such a way that they accomplish a larger and

more complex function than would normally be possible

for a single program. Thus, a Subsystem/Module appli-

cation of Software Metrics to each Subsystem entails:

(1) Selection of Quality Factors for each

subsystem (may be a subset of those

selected for the entire system)

(2) Applying Software Metrics to the docu-

ments that describe the collection of

modules that accomplish the function

of that subsystem in order to determine

the quality of the selected factors for

each subsystem.

In other words the Subsystem/Module Metrics

application VIEWS the Subsystem as the "entire" system

and the procedures over the entire life cycle are the

same as in the System/Subsystem application. It is

possible to apply the Metrics at both the System/

Subsystem levels and the Subsystem/Module levels.

This would require a separate Handbook and separate

application.

!1 -15

Figure II-7 illustrates the two sets of pos-

sible applications where a system has three levels:

(1) System, (2) Subsystem, and (3) Module.

2.4.3.4 Sequencing of Metric Application

The last issue to consider when applying the

Software Metrics is the sequencing of the application

effort itself. A decision should be made (in conjunc-

tion with the level of application) regarding desirable

application sequences: should all applicable Software

Metrics be applied to each document in turn, or should

the Software Metrics be applied to all documents of a

particular phase, searching each document for the re-

sponse for each Data Element question?

2.5 APPLICABILITY OF SOFTWARE METRICS THROUGH THE LIFE CYCLE

As mentioned in Section I, "Software Metrics", each Quality

Factor is calculated from Criteria, Metrics, and Data Elements.

Most of the Quality Factors have at least one Data Element, Metric

and Criteria for each of the four life cycle phases: Requirement

Analysis, Preliminary Design, Detail Design, and Implementation.

In addition, most of the Metrics within each Quality Factor are

unique to a single phase. Therefore, for each Quality Factor, the

normal progression throughout the life cycle is to apply the Soft-

ware Metrics for each phase in the life cycle, asking different

questions at each phase.

This normal progression is deviated from in two ways. First,

some Quality Factors do not apply Software Metrics to all phases

in the life cycle. Only the Quality Factors Reliability, Complete-

ness, Efficiency, and Interoperability apply Software Metrics to

all four phases. Integrity and Usability apply Software Metrics

only to the Requiremeat Analysis and Preliminary Design phases,

while Maintainability and Testability apply Software Metrics to

all phases except the Requirement Analysis phase. Finally, Flexi-

bility, Portability and Reusability. apply Software Metrics only to

the last two phases: Detail Design and Implementation. TABLE II-C

shows this situation.

11-16

* rql -,*r

j SI-

ii iiii.

0
'-4
F-

-4

I.- ~.
I ~.

- ~
'-4

C.).
w -

I-
C.~
-1
1J4

0

U,

w

I!

I;
p

II I
0

4' -4

-4 iii
11-17

QUALITY FACTOR PHASES Where Applicable

Completeness Requirements Analysis
Preliminary Design
Detail Design
Implementation

Reliability Requirements Analysis
Preliminary Design
Detail Design
Implementation

Efficiency Requirements Analysis
Preliminary Design
Detail Design
Implementation

Integrity Requirements Analysis
Preliminary Design

Usability Requirements Analysis
Preliminary Design*

Maintainability Preliminary Design
Detail Design
Implementation

Flexibility Detail Design
Imp lementat ion

Testability Preliminary Design
Detail Design
Implementation

Portability Detail Dosin
Implementation

Reusability Detail Design
Implementation

Interoperability Requirements Analysis
Preliminary Design
Detail Design
Implementation

TALE I -C

....... M ,.. , CYCLE

2.5 continued

The second deviation from the normal progression is that

several Quality Factors repeat Metrics and Data Element questions

across phases, or a Data Element name will be used, but a different

(related) question will be asked. For instance, in the Quality

Factor Correctness, the Metric "Completeness Checklist" is applied

in the Requirement Analysis, Preliminary Design and the Detail De-

sign phases. The same Data Element questions are asked in all three

phases, but different documents and levels of detail are required in

each phase. On the other hand, in the Metric "Data Consistency

Measure", the Data Element "Global Data" asks the question "On the

system level, is global data defined only once?" in the Preliminary

Design phase, but asks, "On the module level, are global variables

used as defined globally?" in the Detail Design phase. The dif-

ference between the two questions is the level of application.

TABLE II-D outlines this situation.

Both of these deviations are a result of the nature of the

Quality Factor being measured. The continuity of Software Metric's

concepts is maintained.

11-19

DATA CONSISTENCY MEASURE

Preliminary Design Phase Detail Desifn Phase

1.0 Global Data (42) 1.0 Global Data (42)

1.1 On the system level, 1.1 On the module level,
is global data are global variables
defined only once? used as defined

globally?
YES -i, NO - YES - 1, NO

COMPLETENESS CHECKLI ST

1.0 Unambiguous References (2) 1.0 Unambiguous References (2)

1.1 Are requirements 1.1 Are requirements
itemized so that the itemized so that the
various functions to various functions to
be performed, their be performed, their
inputs and outputs, inputs and outputs,
are clearly delinealf are clearly delineateA.Z,

YES a 1, NO L. J YES - 1, NO Li]

2.0 External Data Reference(3) 2.0 External Data Reference (3)

2.1 Number of data 2.1 Number of data
references which are references which are
defined, defined.

2.2 Number of major data 2.2 Number of major data
references. references.
Score - EI- 2 Score-E -.

3.0 Major Functions Used (4) 3.0 Major Functions Used (4)
3.1 Number of defined 3.1 Number of defined

functions used. functions used.
3.2 Number of functions 3.2 Number of functions

identifioiL, idontifi I -
Score - j+ Score - s-

4.0 MajOr Functions Defined (5) 4.0 Major Functions Defined (5)

4.1 Number of identified 4.1 Number of identified
functions defined, functions defined.

4.2 Number of functions 4.2 Number of functions
idontifg, ident ifip
Score - ScoreI.tj-_

J ii

ATA EACRSS THE LIFE CYCL

11-20

Preliminary Design Phase Detail Design Phase

5.0 Decision Points Defined (6) 5.0 Decision Points Defined (6)

5.1 Is the flow of 5.1 Is the flow of
processing and all processing and all
decision points in decision points in
that flow defined? that flow defined?

YES - 1, NO - 0 YES - 1, NO - 0

6.0 Agreement of Calling 6.0 Agreement of Calling
Sequence Parameters (7) Sequence Parameters (7)

6.1 Number of defined 6.1 Number of defined
and referenced and referenced
calling sequence calling sequence
parameters that parameters that
agree between agree between
functions. functions.

6.2 Number of calling 6.2 Number of calling
sequence of parameters. sequence of parameters.

Score - Score - --
7.0 Problem Reports Resolved (8) 7.0 Problem Reports Resolved (8)

7.1 Number of those 7.1 Number of those
problem reports problem reports
that have been that have been
closed (resolved) closed (resolved)

7.2 Number of problem 7.2 Number of problem
reports related to reports related to
the requirements the requirements
that have been that have been
reported reported.
Score *Ii.- i1Score

TABLE II-D (cont'd)

DATA ELEMENTS ACROSS THE LIFE CYCLE

11-21

r &~, nlar -

SECTION III

HANDBOOK FRAMEWORK

3.1 COMPONENTS OF COMPUTER SYSTEMS ACQUISITION METRICS HANDBOOK

The Computer Systems Acquisition Metrics Handbook consists

of the following components:

General Instructions - This component discusses the Intro-

duction to metrics, the Framework of Software Metrics, life

cycle considerations, the framework of the Handbook, a step-

by-step method on how to use the Handbook, and Quality Factor

Selection. You are reading this component now.

Eleven Quality Factor Modules - There are eleven quality fac-

tor modules, each module contains a complete hierarchy of

worksheet sets with instructions on how and when to use them.

Data Element Dictionary (DED) - The DED is a reference guide

for all the Data Elements. It lists the name, an index num-

ber for keying from the worksheet to the DED, Data Element

questions asked, a life cycle phase description, an example

with explanations and worksheet reference-for each Data

Element.

Figure III-i graphically represents the framework of the Soft-

ware Metrics Handbook. Section.3.2 discusses the relationship of
4the Handbook's framework to the Software Metric's framework.

3.2 INTERRELATIONSHIP OF SOFTWARE METRIC'S AND HANDBOOK'S FRAMEWORKS

The structure of the Handbook is designed to be closely con-

nected with the Software Metrics framework. At the broadest level

of detail where the two frameworks match is at the eleven modules

themselves. Each module measures one Quality Factor.

III-1

04

.n,

c3-
HM=F

urns unoalrn

neJJ mm IGC

,g~hzc iemc

CAWam Raw

3YAUJriaum

-m

~ANDOQK RA14 WOF

0 1 *M. - - - .

- <1-wmc

The worksheets in each module are arranged in two tc four

sets. These sets are organized according to the relevant Soft-

ware Metrics Life Cycle Model's phases.: Requirements Analysis,

Preliminary Design, Detail Design, and Implementation. The work-

sheets within each phase are arranged accouding to their ranking

in the Software Metrics framework from the bottom-up: (1) Data

Elements, (2) Metric, (3) Criteria & (4) Quality Factor.. This

allows them to be applied in a structured process. A worksheet

set contains the following: one or more Metric worksheets,

followed by one or more Criteria worksheets, followed by one

Factor worksheet. Each level of worksheet contains scores from

the next lowest level of measurement. Therefore, each Metric

worksheet is composed of Data Element scores, each Criteria

worksheet contains Metric scores, and each Factor worksheet is

composed of Criteria scores. A person applying the Handbook at

each phase utilizes the Handbook's worksheets in a process which

is the exact inverse of the Software Metrics framework. The

first value to be derived using the Software Metrics Handbook is

the value of the lowest-level component in the Software Metrics

hierarchy, the Data Element. The next value derived is the Metric

value, which is one level higher, while the third value derived

is the Criteria value which is the second-highest level in the

hierarchy. The last value derived by applying the Handbook to a

system or subsystem is the Factor score, which is the highest

level component in the Software Metrics hieraivhy. Using the

modules' worksheets, the software Metrics framework is being com-

pleted starting at the bottom and working upwards. Figure 111-2

depicts the interrelationship between the framework of the Soft-

ware Metrics and that of the Handbook.

111-3
'.l-5--.

QUAL ITY
FACTOR
MODULE

DATA ELEMENT ATA COLLECTION

METRIC - *METRIC CALCULAT ION

EVALUAT ION

METRIC WORKSHEETS

CRITERIA CRITERIA WORKSHEETS

FACTOR FACTOR WORKSHEETS

---------- -----------------------------------

SOFTWARE
METRICS HANDOOK FRAWORK

FRAMEWORK

FIGURE 111-2

INTIRRELATIONSHIP OF HADI.OQI'S AND

SOF TWAR METRIC'$ FRAMEWORKS

111-4

m u~

SECTION IV

HOW THE HANDBOOK WORKS

4.1 INTRODUCTION

This Handbook is an easy to use set of procedures to apply

Software Metrics to different types of systems. Use of this Hand-

book provides a good working knowledge of Software Metrics and

enables the user to apply them easily.

4.2 STEPS FOR USING THE SOFTWARE METRICS HANDBOOK

STEP 1 - SELECT QUALITY FACTORS

Section V of these General Instructions, "Quality Factor

Selection", is the first step in applying Software Metrics.

Quality Facotrs are selected either at System/Subsystem

levels or Subsystem/Module levels or combinations of both

sets of levels.

STEP 2 - OBTAIN RELEVANT MODULE

After selecting a particular set of Quality Factors for a

system, the next step is to obtain the Quality Factor Modules

corresponding to these Factors. There are eleven separate

Quality Factor Modules, each one corresponding to a Quality

Factor.

Each Quality Factor Module is composed of two parts: (1)

Diagrams and instructions for completing the module's dork-

sheets and score charts. Included in the instructions is a

list of the activities and products required by each phase.

And (2) Worksheet sets.

For a system/subsystem level application, only one module

for each selected Quality Factor will be needed. If a sub-

system/module application is desired, then the Quality Factors

for that subsystem are selected and the corresponding modules

are needed.

IV-1

If a combination of System/Subsystem and Subsystem/Module

applications are desired then Quality Factors are selected

for the System and the corresponding modules are needed for

application to the System Quality Factors are selected for

each Subsystem and corresponding modules for each Subsystem

are needed.

STEP 3 - COMPLETE WORKSHEETS

Worksheets are the tangible tools used in taking quantifiable

measurements of software quality. The worksheets used in

actual field work are contained in the Quality Factor Modules

selected in STEP 2. The actual steps required for completing

the worksheets can be found in "Steps for Completing Worksheets",

in the Module Instructions for each Quality Factor. The end

result of applying these worksheets will be the establishment

of a quality rating for the Quality Factors.

STEP 4 - SUMMARIZING THE WORKSHEET RESULTS

After all of the worksheets have been completed for all of

the selected Quality Factors at the end of each phase, the

Score Charts are completed. The instructions for completing

the Score Charts are included in "How to Use Score Charts

sets", for each Quality Factor in the Module Instructions.

The Score Charts provide a vphicle for summari;ing the

results of the Software Metrics Worksheet Applications.

4.3 IDENTIFICATION OF W0R9SHEETS

In the upper right hand corner of each worksheet is the Form

Code. Each worksheet is assigned a Form Code according to the

Form Code Key notatioR in Table IV-A. When the worksheets are

organized according t9 Form Code, the eleven "Quality Factor

Modules" are formed.

Iv-2

7_77_

MOD E PHSE LJ~EL SUNC

tRAC. 2

INTEGJR'f'F iEQ-AN1C CRITERIA ICOND PAGE OF SET

oDULorens RA - REQJIRDWIrS ANALYSIS M - WTERIC

Re - Reliability PD - PRELIMINARY DESIGN C a CRITERIA
Ef - Efficiency UD - DE WL DESIGN F a FACTOR
It - Integrity 114 - D"HITO
US - Usability
tMa - Maintainability
Fx -Flexibility

Te -Testability

Po *Portability
Ibi Reusability
Ip -Interoperbiity

TABLE IV -A

FORM CODE KEY

* The first segment of a Form Code is an abbreviation of
the Quality Factor that pertains to the module that con-

tains the worksheet: For example, CO (Correctness), Re

(Reliability), etc.

9 The second segment of a Form Code is an abbreviation of

the phase of the set containing the worksheet: For

example, RA (Requirements Analysis), PD TPreliminary

Design), and IN4 (Implementation).

* The third segment of a Form Code is an abbreviation of

the software quality measurement level that pertains to

the worksheet: For example, M (Metric), C (Criterion),

and F (Factor).

* The fourth segment of a Form Code is the sequence number

of a particular worksheet (first Metric worksheet,

second Metric worksheet, etc.).

IV-3

4.4 DAIA LLLMLN'I' DICTILONARY (D1JJ

For quick reference, one hundred twenty-six (126) Data

Elements are individually defined in the Data Element Dictionary

portion of this Handbook. Each dictionary entry contains the

following information: (1) Data Element name, (2) Index number,

(3) Validation question associated with the Data Element in the

Metric Worksheets, (4) Life-cycle phases(s) to which the Data

Element pertains, (5) Definition, (6) An example of the Data

Element's typical use, and (7) Explanation of how to score the

Metric worksheets that contain the Data Element. EXHIBIT IV-1

is a typical entry of a Data Element in the Dictionary.

The Data Element Dictionary should be used as a reference

when additional understanding of a Data Element question is

desired, or when clarification is needed.

IV-4

- -I~ N ~~~__
S=

NAME: Share Temporary Storage

INDEX NUMBERa: 91

DATA ELEMT: Is temporary storage independent /77Y-7

of other modules?

LIFE CYCLE PHASE(S): (1) Detail Design

DESCRIPTION: This is a binary measure to determine whether or
not modules share temporary storage. It empha-
sizes the loss of module independence if tempo-
rary storage is shared between modules.

EXAMPLE: Storage should be separate for each module.
Accessing commons should not be used instead of
passing parameters from one routine to the next.

EXPLANATION: This is a binary measure answered by a "Yes" or
a "Noll.

WORKSHEET REFERENCE: FORM CODE PAGE

MaDDM.5 Ma-28
FxDDM.3 Fx-18
TeDDS4.3 Te-31
PoDDM.l Po-16
RuDDM.l Ru-16
IpDDM.l Ip-30"

I, EM OF AM ELMM

IV-S

[WEO A~N

":.-_.. 2 4 "D-D I..

' ' ,,. I I l 1 V -

SECTION V

QUALITY FACTOR SELECTION

5.1 INTRODUCTION

This section provides a discussion of a method for selecting

the set of Quality Factors for a software system or subsystem.

Following a determination of the appropriate Quality Factors for

the system or subsystem, the corresponding Quality Factor Modules

are applied to the system or subsystem.

The first step of the Quality Factor selection process is to

examine the basic characteristics of the software system or sub-

system, and then compile a preliminary list of Quality Factors that

best provide for those characteristics. The eleven Quality Factors

are listed and defined in TABLE I-A in Section I, "Software Metrics"

of this Handbook.

A discussion of the applicability of Quality Factors to C3

system is provided in Section 5.3 of these General Instructions.

This preliminary list of Quality Factors can be developed by dis-

cussion with as wide a range as possible of the people responsible

for the system development. For example, the Quality Factors in-

put could come from the maintaining command, the originators of

the requirements specifications or the potential users. The

Quality Group responsible for measuring the quality of the system

must obtain clean input on this selection to assure the appro-

priate Quality Factors are being measured. Some of the Quality

Factors cannot co-exist in a system. Therefore the next step is

a trade-off between conflicting Quality Factors to determine the

final set of Quality Factors for measurement.

5.2 QUALITY FACTOR TRADE-OFFS

TABLE V-A shows either HIGH, LOW, or NEUTRAL relationships

among the eleven Quality Factors. Because of the nature of the

relationship between some of the Quality Factors, a high rank for

some of the Quality Factors will result in a conflict with some

.. .. V-l

*1

Mms

mNUmWN 000

-- --- In li lii l I II-II-II- -

0__10 00 00F, 0

___ /1

PLLZW 00@00 / 0
- e| - ---

TABLI V-A

UELATIONSHIPS F53T!W3 SOEAM OUALITY FATRS

LEG=D: If a high 4egree of quality is
proSOmt £0? FCt? what Lepe.e
of quality is ezTpeCtd for the
other:

0- H*gh Low

Blank No relaionship o application depndent

V-2

." A

of the others. This is illustrated in TABLE V-A by a dark circle

in the intersecting squares. In this situation a decision must

determine the significance of the conflict between the Quality

Factors; If the conflict is significant, one of the Quality Fac-

tors may be deleted from the list. However, if other considera-

tions negate the impact of the conflict, both Quality Factors may

be kept; however the low relationship between these factors must

be kept in mind during Evaluation. TABLE V-B is a list and explana-

tion of every possible Quality Factor conflict.

On the other hand, attaining high rank scores for certain

Quality Factors may imply other Quality Factors will also be pres-

ent. If the square in TABLE V-A contains a clear circle, a high

degree of relationship exists between the factors. If the square

is blank, a high degree of quality for one factor will have little

or no effect on the other.

5.3 SIGNIFICANCE OF QUALITY FACTORS IN C3 SYSTEMS

Since the main focus of this handbook is with Tactical Command,

Control and Communication (C) Systems, the following paragraphs

describe how applicable and important each Quality Factor is to a

tactical environment based on typical characteristics of C3 sys-

tems. The Quality Factors, with explanations of their significance,

are listed in order of their importance.

0 Correctness, Reliability and Efficiency - It is essen-

tial for a software system operating in a simulated or

actual battle environment to perform quickly and

accurately. That is the reason why the ability of a

tactical C3 system to satisfy its specifications, ful-

fill the user mission objectives, and perform its

intended function with the least amount of resources

and code are the most crucial requirements.

Interoperability - An important goal of Air Force system

developers is the development of a fully distributed

TAF/C 3 system. This system, composed of many subsystems

spread out geographically, will be designed to operate

V-3

k-

IMTIXTY ThurI addiltips sf wdpuh~g mavd
VS Cm5P~ t~ACII S ofe U rr or date

UPCIRMC Wsally l04pAN no. h1f at iugut sisitiowl

UMILM7 7ho aitgl msad pumulug no lm Ue~ oaVs OR SPSPRIt 151SF ls orovd safl outpuit
Wally 1gbto 'rn tiedi Lw rquire, amiltim

I~~ZUTAWA33UTY ~ tad s. Imempo tiaqlutrigat ailugVs tums VA divan cods. alksys ~'vdo
Gan s to 0 niutalmr. Using "614Mib

wwtjin,med all usad 5mey w t
lmwgg ~ ~ ~ -t WFmmuMf~~ ally

,mang VA avolind vasuim fficlipt

1u5r~LIrTThe we of 4isqais cubi or ad S saw

Vs w m"1111ie8 u*mumi tow SiIVf 0

PjmD2zIY Mm e %lIJI riveid fo a flexible 3yi
________to as grew

minas ~ Tft mm A diussmssion .gmPliu t as~mliv.

INWeLI theu added ovsimped for wsvuims asf0
U ~ ~ NIO stmr dId ,imvstm u n e WI

______ _____ *flqisy of 2: lyeSm

I5~3UTT IlabillW 'mOt"I ue' I Msvn "gaxble
sIrsa" s Iw them~ m - gw17

Is Prvim omft.min Pl1 I to m

WIMJ1 Cplal *vam allow for m ss, %AP of mae

ulfllbs ppsomw for islibseis
Mrldc Ow ped 3U 1 O a sad'

_________ *1 m* 0 4~ ' rblem a wall.

Whdhgewimqw U utto

V-4

using automated resource sharing and distributed con-

trol. For this reason, the ability of any one system

to be coupled with another is a crucial factor.

* Flexibility and Maintainability - A tactical C3 system
will go through a complex evolution in its development,

so it must be adaptable to constant change. Software
modules in a system should be easy to add, replace, and
change.

0 Testability - A tactical C3 system must go through ex-

tensive testing at different points of its development.

Only after testing, can a system's reliability and per-

formance in a battle environment be measured realistically.

* Portability - The ability to transfer data bases and/or

software to and from any unit is important. A fully

distributed C system is composed of a configuration of
mobile and non-mobile hardware units situated at dif-
ferent strategic locations.

0 Usability - Another requirement crucial to the success

of a tactical C3 system in the field is that military
personnel learn to utilize and interface with the soft-

ware with ease. Some methods used by the Air Force to

increase Usability are automated decision aids (to allow

rapid information assimilation and decision making) and

automated communication (to make information readily

available to the commander and his staff).

0 * Integrity - The extent to which access to software and

data can be controlled is relatively unimportant com-

pared with the other requirements, but is essential

nonetheless. For example, the interception of intel-

ligence data by the enemy in a wartime situation could
have grave implications.

* Reusability - The extent to which a program can be

used in other applications is relatively unimportant

in C3 systems.

The order of importance is not always the same and the above

order is meant only as a guide.

V-$

-. •- -I ll Il | [I [I

I

SECTION VI

QUALITY FACTOR EVALUATION

6.1 POST DATA COLLECTION

At the close of Section V you were instructed to use the
Module Instructions to find directions for completing all work-

sheets. This subsection and post-data collection is included

in the "Introduction and General Instructions" to discuss the

possible uses of the data and metric values leading to Quality

Factor Evaluations.

6.2 EVALUATION

As you will see when you start working with the modules

each worksheet contains an Evaluation Worsection. It is im-

portant to remember that the worksection is a subjective work-

section for recording the judgements of the person applying the

module. The other worksections are part of the "objective"

metric system and the "subjective" worksection is included for

the purpose of future analysis. The Evaluation Worksection

asks: "What is your evaluation of the reviewed products based

on.the Metrics above? (1-10 or 0 if you are unable to

evaluate)." When a person is evaluating a Criteria it would be

possible to have one Metric with a high score and another with a

low score. The evaluator could decide that the Criteria should

be evaluated fairly high (5-8) because in his opinion the low

scoring Metric did not have much of an impact on the system.

Because of this subjective nature, a particular evaluator may

consistantly evaluate high, or consistantly evaluate low.

Some method of tracking and monitoring this type of scoring

should be developed so that an analysis of the scores and scorer

can be done as a means of giving a proper interpretation to the

historical data in the data base.

VI-1

-WMI

There are three dimensions that need to be analyzed over time

to improve the credibility of threshold values leading to

Quality Factor Evaluations: (1) The objective metric scores,

(2) The subjective evaluation section score and (3) The in-

dependent evaluation of total systems that are in the maintenace

phase of the life cycle. By comparing these three dimensions

over time metric scores that consistantly have a strong or high

correlation with evaluation at either the worksheet or system

level will lead to the establishment of credible threshold value.

When this happens the user for metrics will expand and become

even more valuable.

IF

VI-2

-
" " "

